287 research outputs found

    Influence of springtime phenology on the ratio of soil respiration to total ecosystem respiration in a mixed temperate forest

    Get PDF
    Total ecosystem (Reco) and soil (Rs) respiration are important CO2 fluxes in the carbon balance of forests. Typically Rs accounts for between 30-80% of Reco, although variation in this ratio has been shown to occur, particularly at seasonal time scales. The objective of this study was to relate changes in Rs/Reco ratio to changing springtime phenological conditions in forest ecosystems. We used one year (2003) of automated and twelve years (1995-2006) of manual chamber-based measurements of Rs. Reco was determined using tower-based eddy covariance measurements for an oak-dominated mixed temperate forest at Harvard Forest, Petersham, MA, USA. Phenological data were obtained from field observations and the JRC fAPAR remote sensing product. The automated and eddy covariance data showed that springtime phenological events do influence the ratio of soil to total ecosystem respiration. During canopy development, Reco rose strongly, mainly the aboveground component, due to the formation of an increasing amount of respiring leaf tissue. An increase in Rs was observed after most of the canopy development, which is probably the consequence of a shift in allocation of photosynthate products from above- to belowground. This hypothesized allocation shift was also confirmed by the results of the twelve year manual chamber-based measurements

    Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A.

    Get PDF
    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling approach builds on a mixed-layer model to infer monthly average net CO2 fluxes using high-precision mixing ratio measurements taken on flux towers. We compared BL model net ecosystem exchange (NEE) with estimates from two independent approaches. First, we compared modeled NEE with tower eddy covariance measurements. The second approach (EC-MOD) was a data-driven method that upscaled EC fluxes from towers to regions using MODIS data streams. Comparisons between modeled CO2 and tower NEE fluxes showed that modeled regional CO2 fluxes displayed interannual and intra-annual variations similar to the tower NEE fluxes at the Rannells Prairie and Wind River Forest sites, but model predictions were frequently different from NEE observations at the Harvard Forest and Howland Forest sites. At the Howland Forest site, modeled CO2 fluxes showed a lag in the onset of growing season uptake by 2 months behind that of tower measurements. At the Harvard Forest site, modeled CO2 fluxes agreed with the timing of growing season uptake but underestimated the magnitude of observed NEE seasonal fluctuation. This modeling inconsistency among sites can be partially attributed to the likely misrepresentation of atmospheric transport and/or CO2gradients between ABL and the free troposphere in the idealized BL model. EC-MOD fluxes showed that spatial heterogeneity in land use and cover very likely explained the majority of the data-model inconsistency. We show a site-dependent atmospheric rectifier effect that appears to have had the largest impact on ABL CO2 inversion in the North American Great Plains. We conclude that a systematic BL modeling approach provided new insights when employed in multiyear, cross-site synthesis studies. These results can be used to develop diagnostic upscaling tools, improving our understanding of the seasonal and interannual variability of surface CO2 fluxes

    The H_2SO_4-HNO_3-NH_3 System at High Humidities and in Fogs: 1. Spatial and Temporal Patterns in the San Joaquin Valley of California

    Get PDF
    A systematic characterization of the atmospheric H_2SO_4-HNO_3-NH_3 system was conducted in the fog water, the aerosol, and the gas phase at a network of sites in the San Joaquin Valley of California. Spatial patterns of concentrations were established that reflect the distribution of SO_2, NO_x, and NH_3 emissions within the valley. The concept of atmospheric alkalinity was introduced to interpret these concentrations in terms of the buffering capacity of the atmosphere with respect to inputs of strong acids. Regions of predominantly acidic and alkaline fog water were identified. Fog water was found to be alkaline in most of the valley, but small changes in emission budgets could lead to widespread acid fog. An extended stagnation episode was studied in detail: progressive accumulation of H_2SO_4-HNO_3-NH_3 species was documented over the course of the episode and interpreted in terms of production and removal mechanisms. Secondary production of strong acids H_2SO_4 and HNO_3 under stagnant conditions resulted in a complete titration of available alkalinity at the sites farthest from NH_3 sources. A steady SO_2 conversion rate of 0.4–1.1% h^(−1) was estimated in the stagnant mixed layer under overcast conditions and was attributed to nonphotochemical heterogeneous processes. Removal of SO_2 was enhanced in fog, compared to nonfoggy conditions. Conversion of NO_x to HNO_3 slowed down during the stagnation episode because of reduced photochemical activity; fog did not appear to enhance conversion of NO_x. Decreases in total HNO_3 concentrations were observed upon acidification of the atmosphere and were attributed to displacement of NO_3− by H_2SO_4 in the aerosol, followed by rapid deposition of HNO_3(g). The occurrence of fog was associated with general decreases of aerosol concentrations due to enhanced removal by deposition

    Fogwater chemistry in an urban atmosphere

    Get PDF
    Analyses of fogwater collected by inertial impaction in the Los Angeles basin and the San Joaquin Valley indicated unusually high concentrations of major and minor ions. The dominant ions measured were NO_3^−, SO_4^(2−), NH_4^+, and H^+. Nitrate exceeded sulfate on an equivalent basis by a factor of 2.5 in the central and coastal regions of the Los Angeles basin but was approximately equal in the eastern Los Angeles basin and the San Joaquin Valley. Maximum observed values for NH_4^+, NO_3^−, and SO_4^(2−) were 10.0, 12.0, and 5.0, meq 1^(−1), while the lowest p;H observed was 2.2. Iron and lead concentrations of over 0.1 mM and 0.01 mM, respectively, were observed. High concentrations of chemical components in fog appeared to correlate well with the occurrence of smog events. Concentrations in fogwater were also affected by the physical processes of condensation and evaporation. Light, dissipating fogs routinely showed the highest concentrations

    The H_2SO_4-HNO_3-NH_3 System at High Humidities and in Fogs: 2. Comparison of Field Data With Thermodynamic Calculations

    Get PDF
    Concentrations of HNO_3(g) and NH_3(g) determined in the field were compared to predictions from aerosol equilibrium models. The products of HNO_3(g) and NH_3(g) concentrations measured under cool and humid nonfoggy conditions agreed in magnitude with predictions from a comprehensive thermodynamic model for the atmospheric H_2SO_4-HNO_3-NH_3-H_2O system. Observed concentrations of NH_3(g) in fogs were generally consistent with those predicted at equilibrium with fog water, but important discrepancies were noted in some cases. These discrepancies may be due to fluctuations in fog water composition over the course of sample collection or to the sampling of nonfoggy pockets of air present within the fog. Detectable concentrations of HNO_3(g) (up to 23 neq m^(−3)) were often found in fogs with pH 5 were below the detection limit of 4–8 neq m^(−3)

    Cloud water chemistry in Sequoia National Park

    Get PDF
    Interception of cloudwater by forests in the Sierra Nevada Mountains may contribute significantly to acidic deposition in the region. Cloudwater sampled in Sequoia National Park had pH values ranging from 4.4 to 5.7. The advance of cold fronts into the Park appears to lead to higher aerosol and gas phase concentrations than are seen under normal mountain-valley circulations, producing higher cloud-water concentrations than might otherwise be expected. Estimates of annual deposition rates of NO_3^−, SO_4^(2−), NH_4^+ and H^+ due to cloudwater impaction are comparable to those measured in precipitation

    Selected breakpoints of net forest carbon uptake at four eddy-covariance sites

    Get PDF
    Extensive studies are available that analyse time series of carbon dioxide and water flux measurements of FLUXNET sites over many years and link these results to climate change such as changes in atmospheric carbon dioxide concentration, air temperature and growing season length and other factors. Many of the sites show trends to a larger carbon uptake. Here we analyse time series of net ecosystem exchange, gross primary production, respiration, and evapotranspiration of four forest sites with particularly long measurement periods of about 20 years. The regular trends shown are interrupted by periods with higher or lower increases of carbon uptake. These breakpoints can be of very different origin and include forest decline, increased vegetation period, drought effects, heat waves, and changes in site heterogeneity. The influence of such breakpoints should be included in long-term studies of land-atmosphere exchange processes.Peer reviewe
    • …
    corecore